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Chapter 1

August 25

1.1 Algebraic Axioms

∀0, 1, 2 ∈ ℝ

• (A1) 0 + 1 = 1 + 0.

• (A2) (0 + 1) + 2 = 0 + (1 + 2).

• (A3) ∃ an element > ∈ ℝ such that 0 + > = > + 0 = 0.

• (A4) For each element 0 ∈ ℝ, ∃ an element (−0) ∈ ℝ such that 0 + (−0) = 0.

• (M1) 01 = 10.

• (M2) (01)2 = 0(12).

• (M3) ∃ an element 1 ∈ ℝ such that 0 ∗ 1 = 1 ∗ 0 = 0.

• (M4) For each element 0 ∈ ℝ \ 0, ∃ an element 1
0 ∈ ℝ such that 0 ∗ 1

0 =
1
0 ∗ 0 = 1.

• (D) 0 ∗ (1 + 2) = 0 ∗ 1 + 0 ∗ 2.

Note

If 0 = 1 and 2 = 3, then 0 + 2 = 1 + 3 and 0 ∗ 2 = 1 ∗ 3.

∀G, H, I ∈ ℝ:

Theorem 1.1

If G + I = H + I then G = H.

Proof.

G + I = H + I (�4)
(G + I) + (−I) = (H + I) + (−I) (�2)
G + (I + (−I)) = H + (I + (−I)) (�4)

G + 0 = H + 0 (�3)
G = H

�

Theorem 1.2

For any G ∈ ℝ, G ∗ 0 = 0.
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Proof.

G ∗ 0 = G ∗ (0 + 0)
G ∗ 0 = G ∗ 0 + G ∗ 0

G ∗ 0 + (−G ∗ 0) = (G ∗ 0 + G ∗ 0) + (−G ∗ 0)
0 = G ∗ 0 + (G ∗ 0 + (−G ∗ 0))
= G ∗ 0 + 0
= G ∗ 0

�

Theorem 1.3

−1 ∗ G = −G i.e. G + (−1) ∗ G = 0.

Proof.

G + (−1) ∗ G = G + G ∗ (−1)
= G ∗ 1 + G ∗ (−1)
= G ∗ (1 + (−1))
= G ∗ 0
= 0

�

Theorem 1.4 Zero-product property

∀G, H ∈ ℝ, G ∗ H = 0 ⇐⇒ G = 0 ∨ H = 0.

Proof. Let G, H ∈ ℝ, if G = 0 or H = 0, then G ∗ H = 0. Suppose G ≠ 0, then we must show H = 0. Since G ≠ 0, 1
G

exists. Thus, if:

GH = 0

1

G
∗ (GH) = 1

G
∗ 0

( 1
G
∗ (GH)) ∗ H = 0

1 ∗ H = 0

H = 0

�

1.2 Order Axioms

∀G, H ∈ ℝ:

• (O1) One of G < H, G > H or G = H is true.

• (O2) If G < H and H < I, then G < I.

• (O3) If G < H then G + I < H + I.

• (O4) If G < H and I > 0 then GI < HI.
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Theorem 1.5

If G < H then −H < −G.

Proof.

G < H

G + (−G + −H) < H + (−G + −H)
(G + −G) + −H < (H + −H) + −G

0 + −H < 0 + −G
−H < −G

�

Theorem 1.6

If G < H and I > 0 then GI > HI.

Proof. If G < H and I > 0 then −I < 0. Thus, G(−I) < H(−I). But,

G(−I) = G(−1 ∗ I)
= (G ∗ −1) ∗ I
= (−1 ∗ G) ∗ I
= −1(G ∗ I)
= −G ∗ I

Similarly, H(−I) = −H ∗ I. Thus, −G ∗ I < −H ∗ I, so GI > HI. �

Note

ℝ is an ordered field. ℝ is complete, while ℚ is not complete.
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Chapter 2

August 30

Theorem 2.1√
2 is irrational.

Proof. Suppose not. Suppose that
√
2 is rational. Then ∃<, = ∈ ℤ such that

√
2 = <

= , = ≠ 0 and < and = share no
common factors. Then,

2 =
<2

=2

2=2 = <2

Thus, <2 is even and < is even. Then, < = 2: for some : ∈ ℤ. But, by substituting < = 2: into the above equation,
we get

2=2 = (2:)2

2=2 = 4:2

=2 = 2:2

Thus, =2 is even, so = is even. So, = is a perfect square, which is a contradiction. Thus,
√
2 is irrational. �

2.1 Upper and Lower Bounds

Theorem: Let ( be a subset of ℝ. If there exists a real number < such that < ≥ B∀B ∈ (, < is called an upper
bound for (. If < ≤ B∀B ∈ (, < is called a lower bound for (. Minimums and maximums must exist in the set to
be valid.

) = {@ ∈ ℚ | 0 ≤ @ ≤
√
2}

• Lower bound: -420, -1

• Upper bound: 100, 5, 2

• Minimum: 0

• Maximum: No max

Because rationals are not complete, there is no upper bound for ).

Definition 2.1: Supremum

The least upper bound of a set is called the supremum of the set.

Definition 2.2: Infimum

The greatest lower bound of a set is called the infimum of the set.
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2.2 Completeness Axiom

Definition 2.3: Completeness axiom

Every nonempty subset of ℝ that is bounded above has a least upper bound. That is, sup ( exists and is a real
number.

Theorem 2.2

The set of natural numbers ℕ is unbounded above.

Proof. Suppose not. Suppose that ℕ is bounded above. If ℕ were bounded above, it must have a supremum <.
Since supℕ = <, < − 1 is not an upper bound. Thus, ∃=0 ∈ ℕ such that =0 > < − 1. But then, =0 + 1 > <. This is
a contradiction since =0 + 1 ∈ ℕ. Thus, ℕ is unbounded above. �

Theorem 2.3

If � and � are nonempty subsets of ℝ, let � = {G + H | G ∈ �, H ∈ �}. If sup� and sup � exist, then
sup� = sup� + sup �.

Proof. Let sup� = 0 and sup � = 1. Then if I ∈ �, I = G + H for some G ∈ �, H ∈ �. Then,

I = G + H ≤ 0 + 1 = sup� + sup �

By the completeness axiom, ∃ a least upper bound of �, 2 = sup�. It must be that 2 ≤ 0 + 1, so we must show
2 ≥ 0 + 1. Let � > 0. Since 0 = sup�, 0 − � is not an upper bound for �. ∃G ∈ � such that 0 − � < G. Likewise,
∃H ∈ � such that 1 − � < H. Then,

(0 − �) + (1 − �) = 0 + 1 − 2 ∗ � < G + H ≤ 2

Thus, 0 + 1 < 2 + 2 ∗ �∀� > 0. So, 0 + 1 ≤ 2 ∴ 2 = 0 + 1. �
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Chapter 3

September 6

3.1 Cardinality

Definition 3.1: Cardinality

The cardinality of a set � is the number of elements in �. We denote this as |�|. We say that two sets � and
� have the same cardinality if and only if ∃ a bijection 5 : �→ �, or |�| = |�|.

Note

This bijection holds true because cardinality is reflexive (via the identity function), symmetric (via the inverse
function), and transitive (via composition).

Note

The following examples demonstrate how to prove whether two sets have the same cardinality.

• |even integers| = |odd integers|: 5 (2=) = 2= + 1.

• |ℤ| = |ℤ+ |: 5 (0) = 1, 5 (1) = 2, 5 (−1) = 3, 5 (2) = 4, . . .

• |ℚ+ | = |ℤ+ |: We can create a diagonal mapping by taking =
< for counting numbers on the rows and columns.

• |ℚ| = |ℤ+ |: ℚ = ℚ+ ∪ℚ− ∪ {0}, so we can repeat the diagonal mapping for ℚ−. This is because any subset of
a countable set is countable.

• |ℚ| ≠ |ℝ|: For the real numbers, Cantor’s Diagonal Argument proves the sets have different cardinality since no
possible surjection exists.

In essence, if we show that there exists some one-to-one mapping between the two sets we can claim that |�| = |�|.

3.2 Countability

Definition 3.2: Countable

If a set is finite or has the same cardinality as ℕ (i.e. ℤ+), we say that the set is countable.

Theorem 3.1

Any subset of a countable set is countable.

Theorem 3.2

Any set that contains an uncountable set is uncountable.
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Theorem 3.3

If [0= , 1=]∀= ∈ ℕ is a nested sequence of closed bounded intervals, ∃� ∈ ℝ such that � ∈ �=∀= ∈ ℕ.

Proof. �= ⊆ �1∀= ∈ ℕ. Thus, 0= ⊆ 11∀= ∈ ℕ. So, 1= is an upper bound for {0= | = ∈ ℕ}. Let � be the supremum
of {0= | = ∈ ℕ}. Thus, 0= ≤ �∀= ∈ ℕ.

We have now shown that 0= ≤ �∀= ∈ ℕ, and we need to show that � ≤ 1=∀= ∈ ℕ. This is left as an exercise
for the reader. �

Note

A nested sequence means that successive subsets contain the previous subset. For example, [0, 1] ⊆ [0, 2] ⊆ [0, 3] ⊆
. . . is a nested sequence.

Theorem 3.4

[0, 1] is uncountable.

Proof. Assume [0, 1] is countable. That is, [0, 1] = � = {G1 , G2 , G3 , . . .}. Select a closed interval �1 ⊆ � such that
G1 ∉ �1. Next, select a closed interval �2 ⊆ �1 such that G2 ∉ �2, and so on. Then, we have

�= ⊆ . . . ⊆ �2 ⊆ �1 ⊆ �

and G= ∉ �=∀= ∈ ℕ. By Theorem 3.3, ∃� ∈ � such that � ∈ �=∀= ∈ ℕ. This implies that � ≠ G=∀= ∈ ℕ. Thus,
� ∉ �, which is a contradiction. Therefore, [0, 1] is uncountable. �
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Chapter 4

September 8

4.1 Limits of Sequences

Definition 4.1: Limit of a sequence

A sequence 0= is said to converge to a real number B, if for any � > 0, ∃ a real number : such that for all
= ≥ :, the terms 0= satisfy |0= − B | < �.

Theorem 4.1

lim=→∞
1√
=
= 0.

Proof. We need to find some # such that = > #∀� > 0.

| 1√
=
− 0| < �

1√
=
< �

1

=
< �2

= >
1

�2

Let � > 0 and # = 1
�2 . Then, if = > # , we have that

| 1√
=
− 0| = 1√

=

<
1√
1
�2

= �

Thus, lim=→∞
1√
=
= 0. �

Theorem 4.2

lim=→∞ 1 + 1
2= = 1.
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Proof. Let � > 0 and # = 1
� . Then, we have

|1 + 1

2=
− 1| < �

| 1
2=
| = 1

2=
<

1

=
<

1
1
�

< �

= >
1

�

Thus, lim=→∞ 1 + 1
2= = 1. �

Theorem 4.3

Every convergent sequence is bounded.

Proof. Let (= be a convergent sequence with a limit B and � = 1. Then, there exists some # such that |(= − B | < 1
when = > # . That is, |(= | < |B | + 1.

Let " = max{(1 , (2 , . . . , (= , |B | + 1}. Then, |(= | ≤ ", so (= is bounded. �

Theorem 4.4

If a sequence converges, its limit is unique.

Proof. Suppose a sequence (= converges to B and C. Let � > 0. Then, ∃#1 such that |(= − B | < �
2 . For = > #1, ∃#2

such that |(= − C | < �
2 . For = > #2, let # = < + {#1 , #2}. Then, for = > # , we have

|B − C | = |B + (= − (= − C |
= |B − (= + (= − C |
≤ |B − (= | + |(= − C |

<
�
2
+ �

2
|B − C | = �

Thus, the limit is unique. �
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Chapter 5

September 13

5.1 Monotone Sequences

Definition 5.1: Monotone sequence

A sequence (= of real numbers is said to be increasing ⇐⇒ (= ≤ (=+1 ∀ = ∈ ℕ and decreasing ⇐⇒ (= ≥
(=+1 ∀ = ∈ ℕ.

Note

The Fibonacci sequence is an example of an increasing sequence.

Definition 5.2: Monotone convergence theorem

A monotone sequence is convergent if and only if it is bounded.

Theorem 5.1

An increasing bounded sequence is convergent.

Proof. Suppose (= is a bounded increasing sequence. Let ( be the set {(= | = ∈ ℕ}. By the completeness axiom,
sup ( exists. Let B = sup (. We claim lim=→∞ (= = B. Given � > 0, B − � is not an upper bound for (.
Thus, ∃ # ∈ ℕ such that (# > B − �. Furthermore, since (= is increasing and B is an upper bound for (, we have
B − � < (# ≤ (= ≤ B ∀ = ≥ # . �

Note

This is an elementary proof because it only uses axioms to make the conclusion.

Ex. (=+1 =
√
1 + (= , (1 = 1.

Theorem 5.2

If (= is an unbounded increasing sequence, then lim=→∞ (= = ∞.

Proof. Let (= be an increasing unbounded sequence. Then, {(= | = ∈ ℕ} is not bounded above, but ( is bounded
below by (1. Thus, given " ∈ ℝ, ∃# ∈ ℕ such that (# > ". But since (= is increasing, (= > " ∀ = > # . Thus,
lim=→∞ (= = ∞. �
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Chapter 6

September 15

6.1 Cauchy Sequences

Definition 6.1: Cauchy sequence

A sequence of real numbers (= is called a Cauchy sequence if and only if for each � > 0, ∃# such that
<, = > # =⇒ |(< − (= | < �.

Note

This means the elements of the sequence get closer to each other as # increases.

Theorem 6.1

Every convergent sequence is Cauchy.

Proof. Let (= be a convergent sequence. Then ∃# such that = > # =⇒ |(= − B | < �
2 for some B ∈ ℝ. Then, for

=, < > # , we have

|(= − (< | = |(= − B + B − (< |
≤ |(= − B | + |B − (< |

<
�
2
+ �

2
= �

Thus, (= is Cauchy. �

Theorem 6.2

A sequence of real numbers is Cauchy if and only if it is convergent.

Note

We cannot prove this yet.
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Chapter 7

September 20

7.1 Empty Set

Theorem 7.1

The empty set is a subset of any set.

Proof. Suppose not. That is, suppose ∃� such that ∅ ⊄ �. Thus, ∃G ∈ ∅ such that G ∉ �. This is a contradiction
because the empty set has no elements. Therefore, ∅ ⊂ �. �

Theorem 7.2

There is only one set with no elements.

Proof. Suppose not. That is, suppose ∃ two empty sets �1 , �2. Then �1 ⊆ �2 and �2 ⊆ �1. Thus, �1 = �2. This is
a contradiction because �1 and �2 are two different sets. Therefore, there is only one empty set. �

Note

Closedness of ∅ The empty set is open and closed (vacuously true).

7.2 Topology

Let ( ⊆ ℝ for the following definitions.

Definition 7.1: Neighborhood

A neighborhood of G in ( can be thought of an varepsilon-sized ball around G, i.e. #(G, �) = {H ∈ ' | 0 ≤
|G − H | < �}.

Definition 7.2: Deleted neighborhood

A deleted neighborhood is the same as a neighborhood except that G is not included, i.e. #★(G, �) = {H ∈ ' |
0 < |G − H | < �}.

Definition 7.3: Accumulation point

G ∈ ℝ is an accumulation point of ( if and only if every deleted neighborhood of G contains a point of (.
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Note

(0,∞) has accumulation points [0,∞). (0, 1) does not contain all of its accumulation points since 0 and 1 are both
accumulation points of the set.

Theorem 7.3

( ∈ ℝ is closed if and only if ( contains all of its accumulation points.

Proof. Suppose ( is closed. Let G be an accumulation point of (. If G ∉ (, then G ∈ ({. Thus, ∃ a neighborhood #

of G such that # ⊆ ({. But # ∩ ( = ∅, which contradicts G being an accumulation point of (.

Conversely, suppose ( contains all of its accumulation points. Let G ∈ ({, then G is not an accumulation point

of (. Thus, ∃#★(G, �) that misses (. Since G ∉ (, #(G, �) misses (. Therefore, ({ is open, which means ( is
closed. �

Theorem 7.4

If ( is a nonempty closed bounded subset of ℝ, then ( has a max.

Proof. Let B = sup (. Then, B is an accumulation point of (. Since ( is closed, B ∈ (. Thus, B is a max of (. �

Definition 7.4: Interior point

G ∈ ( is an interior point of ( if and only if ∃#(G, C) such that #(G, C) ⊂ (.

Definition 7.5: Boundary point

G ∈ ( is a boundary point of ( if and only if every neighborhood # of G has # ∩ ( ≠ ∅ and # ∩ ({ ≠ ∅.

7.3 Closure

Definition 7.6: Open set

( is an open set if and only if every point in ( is an interior point of (. ∀G ∈ (, ∃ a neighborhood #(G, �) for
some � > 0 such that #(G, �) ⊆ (.

Definition 7.7: Closed set

( is a closed set if and only ( contains at least one of its boundary points. Additionally, ({ must be an open
set.

Note

ℝ is open because all of its points are interior points. ℝ is also closed because ℝ has no boundary points, therefore
implying that it contains at least one of its boundary points (vacuously true).

Theorem 7.5

The union of two open sets is open.

Proof. Let � and � be open sets. Let G ∈ � ∪ �. Then G ∈ � or G ∈ �. If G ∈ �, then ∃ a neighborhood #1 of G
such that #1 ⊆ �. But then, #1 ⊆ � ∪ �. If G ∈ �, then ∃ a neighborhood #2 of G such that #2 ⊆ �. But then,
#2 ⊆ � ∪ �.

Thus, in either case, ∃ a neighborhood # of G such that # ⊆ � ∪ �. Therefore, � ∪ � is open. �
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Theorem 7.6

An arbitrary union of open sets is open.

Proof. Let �1 , �2 , . . . , �= be open sets. Let G ∈ ⋃=
8=1 �8 . Then G ∈ �8 for some 8. Let #8 be a neighborhood of G

such that #8 ⊆ �8 . Then #8 ⊆ �8 ⊆
⋃=
8=1 �8 . Therefore,

⋃=
8=1 #8 ⊆

⋃=
8=1 �8 .

Thus,
⋃=
8=1 #8 is a neighborhood of G such that

⋃=
8=1 #8 ⊆

⋃=
8=1 �8 . Therefore,

⋃=
8=1 �8 is open. �

Theorem 7.7

The intersection of two open sets is open.

Proof. Let � and � be open sets. Let G ∈ � ∩ �. Then G ∈ � and G ∈ �. Thus, ∃ neighborhoods #1(G, �1) and
#2(G, �2). Let � = <8={�1 , �2}. Then #1(G, �) ⊆ � and #2(G, �) ⊆ �.

Thus, #(G, �) ⊆ � ∩ �. Therefore, � ∩ � is open. �

Theorem 7.8

A finite intersection of open sets is open.

Proof. Let �1 , �2 , . . . , �= be open sets. Let G ∈ ⋂=
8=1 �8 . Then G ∈ �8 for all 8. Let #8 be a neighborhood of G such

that #8 ⊆ �8 . Then #8 ⊆ �8 ⊆
⋂=
8=1 �8 . Therefore,

⋂=
8=1 #8 ⊆

⋂=
8=1 �8 .

Thus,
⋂=
8=1 #8 is a neighborhood of G such that

⋂=
8=1 #8 ⊆

⋂=
8=1 �8 . Therefore,

⋂=
8=1 �8 is open. �

Theorem 7.9

An arbitrary intersection of open sets is open.

Note⋂∞
8=1(− 1

= ,
1
= ) = ∅.
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Chapter 8

September 22

8.1 Set Covers

Definition 8.1: Open cover

An open cover � of some subset ( ∈ ℝ is a collection of open sets whose union contains (.

Note

If � ⊆ � and � also covers (, we call � a subcover.

Definition 8.2: Compact

A set ( is said to be compact is and only if whenever ( is contained in the union of a family � of open sets,
then it is contained in a finite number of the sets in � (every open cover has a finite subcover).

Note

It is hard to show that a set is compact since we have to consider every open cover.

Theorem 8.1 Heine-Borel

A subset ( of ℝ is compact if and only if ( is closed and bounded.

Proof. Let ( be a compact set. Observe the open cover (−=, =)∀= ∈ ℕ. Since ( is compact, ∃ a finite subcover
(−=1 , =1), (−=2 , =2), . . . , (−=: , =:). ∃ one of these sets such that

⋃:
8=1(−=8 , =8) = (−=< , =<) for some < = 1, 2, . . . :.

Thus, ( ⊆ (−=< , =<), so ( is bounded.
Let ( be a compact set. Suppose ( is not closed. Let ? be a boundary point of (, and Let *= = ℝ \ [?− 1

= , ?+
1
= ]∀= ∈ ℕ. ( ⊆ ⋃

*= = ℝ ?. ∃ a finite subcover =1 , =2 , . . . , =: such that ( ⊆ ⋃:
8=1*=8 . ∃: such that ( ⊆ *=: .

But, this is a contradiction with ? being a boundary point. Therefore, ( is closed.
The proof in the other direction is similar, yet non-trivial. �

Theorem 8.2 Bolzano-Weierstrass

If a bounded subset ( of ℝ contains infinitely many points, then ∃ at least one accumulation point of (.

Proof. Let ( be a bounded infinite subset of ℝ. Suppose ( has no accumulation points, then ( is closed. By Heine-
Borel, ( must be compact. Define neighborhoods #G such that #G(G) ∩ ( = G∀G ∈ (. Clearly, ( ⊆ ⋃

G #G . But, the
collection of all #G must contain a finite subcover. That is,

( ⊆ #G1 ∪ #G2 ∪ . . . ∪ #G:

for some : ∈ ℕ. This contradicts that ( is infinite. Therefore, ( has an accumulation point. �
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8.2 Cauchy Convergence

Theorem 8.3

Every Cauchy sequence is convergent.

Proof. (= is Cauchy, so ( = {(= | = ∈ ℕ}. By Bolzano-Weierstrass, ∃ an accumulation point B of (. We claim that
(= → B. Given � > 0, ∃ # such that <, = > # . Then |(< − (= | < �

2 . (( − �
2 , ( + �

2 ) contains an infinite number of
points.

∃< > # such that (< ∈ #(B, �2 ). But then, |(= − B | = |(= − (< + (< − B | ≤ |(= − (< | + |(< − B | < �
2 + �

2 = �.
Therefore, (= → B. �

Theorem 8.4

Let G= be a sequence of non-negative real numbers.
∑
G= converges if (: , the sequence of partial sums is

bounded.

Proof.
∑∞
==1 G= = lim:→∞ (: . (: is increasing and bounded, it is convergent by the monotone convergence theorem.

�
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Chapter 9

September 27

9.1 Limits of Functions

Definition 9.1: Limit of a function

Let 5 : � → ℝ and let 2 be an accumulation point of the function. Then, limG→2 5 (G) = ! if and only if given
� > 0, ∃� > 0 such that if |G − 2 | < �, then | 5 (G) − !| < �.

Note

Suppose we want to show that limG→2 (G + 1 = 11. We are looking for some � > 0 such that 0 ≤ |G − 2| < � and
|(G + 1 − 11| < �. This is structured similarly to proofs of limits of sequences.
Additionally, the limit must go to an accumulation point of the function because we cannot find the limit of a value
outside the function’s domain.

Theorem 9.1

limG→5 10G + 2 = 52.

Proof. We need to find some � > 0 such that whenever 0 < |G − 5| < �, |10G + 2 − 52| < �.

|10G − 50| < �

10|G − 5| < �

|G − 5| < �
10

Given � > 0, let � = �
10 . Then, whenever 0 < |G−5| < �, we have |10G+2−52| = |10G−50| = 10|G−5| < 10∗ �10 = �. �

Theorem 9.2

limG→3 G
2 + 2G + 6 = 21.

Proof. We need to find some � > 0 such that whenever 0 < |G − 3| < �, |(G2 + 2G + 6) − 21| < �.

|G2 + 2G + 6 − 21| < �

|G2 + 2G − 15| < �

|G + 5| |G − 3| < �

If � < 1 =⇒ |G + 5| |G − 3| < 9|G − 3| < �. Thus |G − 3| < �
9 . We let � = min{1, �9 }.

Given � > 0, let � = min{1, �9 }. Then, whenever 0 < |G − 3| < �, we have that |G + 5| < 9, thus, |(G2 + 2G +
6) − 21| = |G2 + 2G − 15| = |G + 5| |G − 3| < min{1, �9 } ∗ �9 = �. �
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Note

These proofs have two phases. First, we determine some � as an upper bound. Then, we show how this choice of
� implies the limit is bounded by some �.

Theorem 9.3

Let 5 : � → ℝ and 2 is an accumulation point of �. Then, limG→2 5 (G) = ! if and only if for every sequence
(= ∈ � such that (= → 2, (= ≠ 2∀=, then 5 ((=) converges to !.

Proof. limG→2 5 (G) = ! and (= → ! =⇒ 5 ((=) → !. We need to find # such that = > # and | 5 ((=) − !| < �. We
know that ∃� such that 0 < |G − 2 | < � =⇒ | 5 (G) − !| < � and ∃# such that = > # =⇒ |(= − 2 | < �. Thus, for
= > # we have | 5 ((=) − !| ∈ �.

Suppose ! is not the limit of 5 as G approaches 2. We must find ((=) that converges to 2, but 5 ((=) does
not converge to ! (contrapositive). ∃� > 0 such that ∀� > 0, 0 < |G − 2 | < � =⇒ | 5 (G) − !| ≥ �. For each
= ∈ #, ∃(= ∈ � such that 0 < |(= − 2 | < 1

= and | 5 ((=) − !| ≥ �. Then, (= → 2, but 5 ((=) 6→ !. This is a
contradiction. �
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Chapter 10

September 29

10.1 Sums of Limits

Theorem 10.1

Let ;8<G→2 5 (G) = !, ;8<G→2 6(G) = ". Then, ;8<G→2( 5 + 6)(G) = ! +".

Proof (Definition 9.1). Given � > 0, let �1 > 0 be such that 0 < |G − 2 | < �1 =⇒ | 5 (G) − !| < �
2 . Let �2 > 0 be

such that 0 < |G − 2 | < �2 =⇒ |6(G) −" | < �
2 .

Let � = <8={�1 , �2}. Then, for 0 < |G − 2 | < �, we have

| 5 (G) + 6(G) − (! +")| = |( 5 (G) − !) + (6(G) −")| ≤ | 5 (G) − !| + |6(G) −" | < �
2
+ �

2
= �.

�

Proof (Theorem 9.3). Let ;8<G→2 5 (G) = !, limG→2 6(G) = ", and (= be a sequence of real numbers such that
(= → 2. Then,

lim
=→∞
( 5 + 6)((=) = lim

=→∞
5 ((=) + 6((=) = lim

=→∞
5 ((=) + lim

=→∞
6((=) = ! +"

Thus, limG→2( 5 + 6)(G) = ! +". �

Note

This is true for −, ×, and ÷ as well.

Definition 10.1: Sequential criterion for functional limits

limG→2 5 (G) = ! if and only if whenever (= → 2, lim=→∞ 5 ((=) = !.

Theorem 10.2

Let : ∈ ℝ. If limG→2 5 (G) = !, then limG→2 : 5 (G) = :!.

Proof. Let limG→2 5 (G) = !, : ∈ ℝ, and (= be a sequence of real numbers such that (= → 2. Then,

lim
=→∞

: 5 ((=) = : lim
=→∞

5 ((=) = :!

Thus, limG→2 : 5 (G) = :!. �
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10.2 Continuity of Functions

Definition 10.2: Continuous function

A function 5 is continuous at G = 2 if and only if limG→2 5 (G) = 5 (2). Let B be an accumulation point of the
domain 5 : � → ℝ. Then, 5 is continuous at B if and only if for each � > 0, ∃� > 0 such that whenever
0 < |G − B | < �, | 5 (G) − 5 (B)| < �.

Note

Let 5 (G) = G sin( 1G ) where G ≠ 0, 5 (0) = 0. If we want to show that this function is continuous, we need to find
some � > 0 such that |G | < � =⇒ | 5 (G)− 5 (0)| < �. Let � = �, then when |G | < �, | 5 (G)− 5 (0)| = |G sin( 1G )−0| =
|G sin( 1G )| ≤ |G | < �.

Theorem 10.3

If 5 and 6 are continuous at G = 2, then 5 + 6 is also continuous at G = 2.

Proof. Let 5 and 6 be continuous at 2 and (= be a sequence of real numbers such that (= → 2. Then,

lim
=→∞
( 5 + 6)((=) = lim

=→∞
5 ((=) + lim

=→∞
6((=) = 5 (2) + 6(2)

Thus, limG→2( 5 + 6)(G) = ( 5 + 6)(2). �

Theorem 10.4

Let 5 : � → � be continuous at G = 2 and let 6 : � → ' be continuous at G = 5 (2). Then, the composition
6 ◦ 5 is continuous at G = 2.

Proof. This is left as an exercise for the reader. �
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Chapter 11

October 6

11.1 Derivatives

Definition 11.1: Derivative

Let 5 be a real-valued function defined on an open interval containing 2. We say 5 is differentiable at 2 if

limG→2
5 (G)− 5 (2)
G−2 exists. We call this limit 5 ′(2).

Theorem 11.1

If 5 is differentiable at 2, then 5 is continuous at 2.

Proof. Let 5 be defined on some interval � containing 2. Then if 5 is differentiable at 2, if and only if for G ≠ 2,

5 (G) = (G − 2) 5 (G) − 5 (2)
G − 2 + 5 (2)

Then, limG→2 5 (G) = limG→2(G − 2) 5 (G)− 5 (2)G−2 + 5 (2) = limG→2(G − 2) 5 ′(2) + 5 (2) = 5 (2). Therefore, 5 is continuous at
2. �

Derivative Rules

• 3
3G
: 5 = :

35

3G

• 3
3G
5 + 6 = 35

3G
+ 36

3G

• 3
3G
5 · 6 = 35

3G
6 + 36

3G
5

• 3
3G

5

6 =
35

3G
6− 36

3G
5

62

Theorem 11.2 Product rule

( 5 6)′ = 5 ′6 + 5 6′

Proof. Suppose 5 and 6 are differentiable at 2. Then,

lim
G→2

( 5 6)(G) − ( 5 6)(2)
G − 2 = lim

G→2

5 (G)6(G) − 5 (2)6(2)
G − 2

= lim
G→2

5 (G)6(G) − 5 (G)6(2) + 5 (G)6(2) − 5 (2)6(2)
G − 2

= lim
G→2

5 (G)(6(G) − 6(2))
G − 2 + 6(G)( 5 (G) − 5 (2))

G − 2 .

= 5 (2)6′(2) + 6(2) 5 ′(2)
23



�

Theorem 11.3 Quotient rule

( 5
6
)′ = 5 ′6 − 5 6′

62

Proof. Let 5 and 6 be differentiable at 2. Then,

lim
G→2

5

6 (G) −
5

6 (2)
G − 2 = lim

G→2

5 (G)
6(G) −

5 (2)
6(2)

G − 2

= lim
G→2

5 (G)6(2)− 5 (2)6(G)
6(G)6(2)
G − 2

= lim
G→2

5 (G)6(2) − 6(2) 5 (2) + 6(2) 5 (2) − 5 (2)6(G)
(G − 2)6(G)6(2)

= lim
G→2

6(2) 5 (G)− 5 (2)(G−2) + 5 (2)
6(G)−6(2)
(G−2)

6(2)6(G)

= lim
G→2

6(2) 5 ′(2) − 5 (2)6′(2)
62(2) �0

�

Theorem 11.4 Power rule

(G=)′ = =G=−1 5 ′ ∀ = ∈ ℕ

Proof by induction. ?(=) = (G=)′ = =G=−1 5 ′.
?(1): 5 (G) = G. limG→2

G−2
G−2 = 1 = 1 · G0.

?(:) → ?(: + 1):

3

3G
G:+1 =

3

3G
G: · G

= ( 3
3G
G:) · G + G:( 3

3G
G)

= :G:−1 · G + G: · 1
= :G: + G:

= (: + 1)G:

�

Theorem 11.5 Chain rule

6( 5 (G))′ = 6′( 5 (G)) · 5 ′(G)

Proof.

lim
G→2

6( 5 (G)) − 6( 5 (2))
G − 2 = lim

G→2

6( 5 (G)) − 6( 5 (2))
5 (G) − 5 (2)

5 (G) − 5 (2)
G − 2

= 6′( 5 (G)) 5 ′(G)

�
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Note

This will not hold if 5 (G) = 5 (2). This is not the full proof.
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Chapter 12

October 13

12.1 Differentiability and Continuity

Theorem 12.1

Let 5 be defined on an interval � containing 2. Then, 5 is differentiable at 2 if and only if ∃ a function ! on �
such that ! is continuous at 2 and

5 (G) − 5 (2) = !(G)(G − 2)∀G ≠ 2

In this case, we have !(2) = 5 ′(2).

Note

Let 5 (G) = G3. Then, 5 (G) − 5 (2) = G3 − 23 = (G2 + G2 + 22)(G − 2). )(2) = 22 + 2 · 2 + 22 = 322 = 5 ′(2).

Proof. If 5 ′(2) exists, we can define ! as

!(G) =
{
5 (G)− 5 (2)
G−2 if G ≠ 2

5 ′(2) if G = 2

Then, ! is continuous. Since limG→2 !(G) = 5 ′(2) = !(2). Thus, the function is differentiable. If G = 2, the equation
from the theorem holds as 0 = 0.

Assume ! is continuous at 2 and satisfies the equation. Then, continuity of ! implies !(2) = limG→2 !(G) =
limG→2

5 (G)− 5 (2)
G−2 =⇒ !(2) = 5 ′(2) since 5 is differentiable. �

Theorem 12.2 Chain rule

6( 5 (2))′ = 6′( 5 (2)) · 5 ′(2)

Proof. Let 2 ∈ �. 5 is continuous at 2. Define

!(G) =
{
6(H)−6( 5 (2))
H− 5 (2) if H ≠ 5 (2)

6′( 5 (2)) if H = 5 (2)
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Thus, ! is continuous at 2. Then,

lim
G→2

!( 5 (G)) = !( 5 (2)) = 6′( 5 (2))

6(H) − 6( 5 (2)) = !(H)(H − 5 (2))
6( 5 (G)) − 6( 5 (2)) = !( 5 (G))( 5 (G) − 5 (2))

lim
G→2

6( 5 (G)) − 6( 5 (2))
G − 2 = lim

G→2

!( 5 (G))( 5 (G) − 5 (2))
G − 2

6′( 5 (2)) = lim
G→2

!( 5 (G)) · lim
G→2

5 (G) − 5 (2)
G − 2

6′( 5 (2)) = 6′( 5 (2)) · 5 ′(2)

Thus, the chain rule holds. �

Theorem 12.3

If ( is a nonempty compact subset of ℝ, ( has a max and a min.

Proof. Let < = sup ( exist by the completeness axiom. Given C > 0, ∃G such that < − C < G < <. Then, < is an
accumulation point of (. But ( is closed by Heine-Borel. Thus, < ∈ (.

The same proof holds for the min. �

Theorem 12.4

If 5 is continuous and � is compact, then 5 (�) is compact. (Note: this will be on the final).

Proof. We know that the inverse of a continuous function is continuous (final exam proof) and that if an open set is
continuous its inverse is also continuous (exam 2 proof).

Take an open cover * = {D8} of 5 (�). Then, 5 −1(D8) is an open cover for �. But, only a finite number are
needed ({D1 , D2 , . . . , D=}). Then, ({ 5 (D1), 5 (D2), . . . , 5 (D=)}) is a finite subcover of D8 for 5 (�). �

Theorem 12.5

Let � be compact and suppose 5 : � → ℝ is continuous, then 5 assumes a min and a max.

Proof. Since � is compact, 5 (�) is compact. Thus, 5 (�) has a min H1 and a max H2. Since H1 , H2 ∈ 5 (�), ∃G1 , G2 ∈ �
such that 5 (G1) = H1 and 5 (G2) = H2. Thus, 5 (G1) ≤ 5 (G) ≤ 5 (G2)∀G ∈ �. �

Theorem 12.6

If 5 is differentiable on an (0, 1) and 5 assumes a max or min for some 2 ∈ (0, 1), then 5 ′(2) = 0.

Proof. Suppose 5 assumes its max is at 2. That is to say 5 (G) ≤ 5 (2)∀G ∈ (0, 1). Let G= be a sequence converging
to 2 such that 0 < G= < 2. Then,

5 (G=) − 5 (2)
G= − 2

converges to 5 ′(2). But, each term is nonnegative. Therefore, the derivative is nonnegative =⇒ 5 ′(2) ≥ 0. Now,
define H= as a sequence converging to 2 such that 2 < H= < 1.

If we look at the sequence
5 (H= )− 5 (2)
H=−2 , we see that it converges to 5 ′(2). But, each term is nonpositive. Therefore,

the derivative is nonpositive, so 5 ′(2) ≤ 0 ∴ 0 ≤ 5 ′(2) ≤ 0, so we must have that 5 ′(2) = 0. �
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Chapter 13

October 20

13.1 Mean Value Theorem

Theorem 13.1 Rolle’s theorem

Let 5 be continuous on [0, 1] and differentiable on (0, 1), and let 5 (0) = 5 (1). Then ∃2 ∈ (0, 1) such that
5 ′(2) = 0.

Proof. Since 5 is continuous and [0, 1] is compact, ∃G1 , G2 ∈ [0, 1] such that 5 (G1) ≤ 5 (G) ≤ 5 (G2)∀G ∈ [0, 1]. If
G1 and G2 are the endpoints of the interval, then 5 is a compact function, thus 5 ′(2) = 0∀2 ∈ (0, 1). Otherwise, 5
contains a max at G2 ∴ 5 ′(G2) = 0. Thus ∃2 ∈ (0, 1) such that 5 ′(2) = 0. �

Theorem 13.2 Mean value theorem

Let 5 be continuous on [0, 1] and differentiable on (0, 1). Then ∃2 ∈ (0, 1) such that 5 ′(2) = 5 (1)− 5 (0)
1−0 .

Proof. Let 6(G) be defined as 6(G) = 5 (1)− 5 (0)
1−0 (G − 0) + 5 (0). Let ℎ(G) be the distance from the graph of 5 ◦ 6. That

is, ℎ = 5 − 6. Then, ℎ is continuous on [0, 1] and differentiable on (0, 1). Furthermore, ℎ(0) = ℎ(1) = 0.
By Rolle’s Theorem, ∃2 ∈ (0, 1) such that ℎ′(2) = 0. Thus,

0 = ℎ′(2) = 5 ′(2) − 6′(2) = 5 ′(2) − 5 (1) − 5 (0)
1 − 0

Therefore, 5 ′(2) = 5 (1)− 5 (0)
1−0 . �

Theorem 13.3

Let 5 be continuous on [0, 1] and differentiable on (0, 1). Then if 5 ′(G) = 0∀G ∈ (0, 1), then 5 is constant on
[0, 1].

Proof. Suppose 5 is not constant. Then, ∃G1 , G2 such that 0 ≤ G1 < G2 ≤ 1 and 5 (G1) ≠ 5 (G2). By the Mean Value
Theorem, ∃2 ∈ (G1 , G2) such that

5 ′(2) =
5 (G2) − 5 (G1)
G2 − G1

≠ 0

But, this is a contradiction. Therefore, 5 is constant on [0, 1]. �

Theorem 13.4

Let 5 be differentiable on an interval �. If 5 ′(G) > 0∀G ∈ �, then 5 is strictly increasing on �.
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Proof. Suppose 5 ′(G) > 0∀G ∈ � and G1 , G2 ∈ � such that G1 < G2. Mean Value Theorem implies that ∃2 ∈ (G1 , G2)
such that 5 ′(2) = 5 (G2)− 5 (G1)

G2−G1 . Which is to say that

5 (G2) − 5 (G1) = 5 ′(2)(G2 − G1)

Thus, 5 (G2) − 5 (G1) is positive since 5 ′(2) and (G2 − G1) are both positive. Therefore, 5 is increasing. �

13.2 Intermediate Value Theorem

Theorem 13.5 Intermediate value theorem

Let 5 be continuous on [0, 1] and suppose 5 (0) < 0 < 5 (1). Then ∃2 ∈ (0, 1) such that 5 (2) = 0.

Proof. Let 2 be the largest value for which 5 (G) ≤ 0. Let ( = {G ∈ [0, 1] | 5 (G) ≤ 0}. Since 0 ∈ (, (, is nonempty.
Thus, sup ( = 2 exists.

We claim that 5 (2) = 0. Suppose 5 (2) < 0, then ∃ a neighborhood * of 2 such that 5 (G) < 0∀G ∈ * ∩ [0, 1].
Now, 2 ≠ 1 since 5 (0) < 0 < 5 (1). Thus, * contains a point ? such that 2 < ? < 1 where 5 (?) < 0. But, this is a
contradiction since ? ∈ ( and ? > 2. Therefore, 5 (2) ≮ 0.

Similarly, suppose 5 (2) > 0. We can follow this proof in the other direction to show that 5 (2) = 0. �

Note

This is the baby version of the intermediate value theorem. The full version will be asked on exam 2.
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Chapter 14

October 25

14.1 Cauchy Mean Value Theorem

Theorem 14.1 Cauchy mean value theorem

Let 5 and 6 be continuous on [0, 1] and differentiable on (0, 1). Then, ∃ at least one 2 ∈ (0, 1) such that

( 5 (1) − 5 (0))6′(2) = (6(1) − 6(0)) 5 ′(2)

Proof. Let ℎ(G) = ( 5 (1) − 5 (0))6′(G) − (6(1) − 6(0)) 5 ′(G)∀G ∈ [0, 1].
Note that

ℎ(0) = ( 5 (1) − 5 (0))6(0) − (6(1) − 6(0)) 5 (0) = 0

= 5 (1)6(0) − 5 (0)6(1)

and

ℎ(1) = ( 5 (1) − 5 (0))6(1) − (6(1) − 6(0)) 5 (1) = 0

= 5 (1)6(0) − 5 (0)6(1)

Thus, ℎ is continuous on [0, 1], differentiable on (0, 1), and ℎ(0) = ℎ(1). Therefore, by Rolle’s theorem,
∃2 ∈ (0, 1) such that ℎ′(2) = 0. That is to say,

ℎ′(2) = ( 5 (1) − 5 (0))6′(2) − (6(1) − 6(0)) 5 ′(2) = 0

which implies the desired equality. �

14.2 L’Hospital’s Rule

Theorem 14.2 L’Hospital’s rule

Let 5 and 6 be continuous on [0, 1] and differentiable on (0, 1) and 5 (2) = 6(2) = 0. Also suppose that
6′(2) ≠ 0 in some neighborhood of 2.
If

lim
G→2

5 ′(G)
6′(G) = !

then

lim
G→2

5 (G)
6(G) = !
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Proof. Let G= be a sequence that converges to 2. By the Cauchy mean value theorem ∃ a sequence 2= such that 2=
is between G= and 2 for each = and

( 5 (G=) − 5 (2))6′(2=) = (6(G=) − 6(2)) 5 ′(2=)

Thus,
5 (G=)
6(G=)

=
5 (G=) − 5 (2)
6(G=) − 6(2)

=
5 ′(2=)
6′(2=)

Furthermore, since G= → 2 and 2= → 2, we have that if lim=→∞
5 ′(2= )
6′(2= ) = !, then limℎ→∞

5 (G= )
6(G= ) = limG→2

5 (G)
6(G) =

!. �

14.3 Taylor’s Theorem

Theorem 14.3 Taylor’s theorem

Let 5 and its first = derivatives be continuous on [0, 1] (implying that they are also differentiable). Let
G0 ∈ [0, 1]. Then, for each G ∈ [0, 1] with G ≠ G0, ∃ a 2 between G and G0 such that

5 (G) = 5 (G0) + 5 ′(G0)(G − G0) +
5 ′′(2)
2!
(G − G0)2 + · · · +

5 (=+1)(2)
(= + 1)! (G − G0)

=+1

Proof. Let G0 and G be given and let � = [G0 , G] or [G, G0]. We will define � on � as follows:

�(C) = 5 (G) − 5 (C) − (G − C) 5 ′(C) − (G − C)
2

2!
5 ′′(C) − · · · − (G − C)

=

(=)! 5 (=)(C)

Note that

�′(C) = −(G − C)
=

=!
5 (=+1)(C)

and define � by

�(C) = �(C) −
(
G − C
G − G0

)=+1
�(G0)

Note that �(G0) = 0 = �(G). Then, by Rolle’s Theorem, ∃2 between G and G0 such that �′(2) = 0. That is,

0 = �′(2) = �′(2) + (= + 1) (G − 2)
=

(G − G0)=+1
�(G0)

Hence,

�(G0) = −
(

1

= + 1

) (
(G − G0)=+1
(G − 2)=

)
�′(2)

=

(
1

= + 1

) (
(G − G0)=+1
(G − 2)=

) (
(G − 2)=
=!

)
5 (=+1)(2)

=

(
(G − G0)=+1
(= + 1)!

)
5 (=+1)(2)

which implies the desired equality. �
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Chapter 15

October 27

15.1 Applications of Taylor’s Theorem

Definition 15.1: Taylor polynomial

We denote a Taylor polynomial P=(G) as

P=(G) = 5 (G0) + 5 ′ (G0) (G − G0) +
5 ′′ (G0)

2
(G − G0)2 +

5 (=)(G0)

=!
(G − G0)=

and a remainder term '=(G) with some 2 ∈ ℝ where G0 <= 2 <= G as

'=(G) =
5 (=+1)(2)
(= + 1)! (G − G0)

=+1

Example 15.1

Estimate 46 on [−1, 1] using a Taylor polynomial. Let 5 (G) = 4G , G0 = 0 and = = 5.

4G = 5 (0) + 5 ′(0)G + 5 ′′(0)
2

G2 + 5 ′′′(0)
3!

G3 + 5 (4)(0)
4!

G4 + 5 (5)(0)
5!

G5 + 5 (6)(0)
6!

G6

= 1 + G + G
2

2
+ G

3

3!
+ G

4

4!
+ G

5

5!
+ G

6

6!

You can place an upper bound on the remainder term on the interval [−1, 1] (2 = 1 maxes out 5 ′(2) and G = 1
maxes out G6).

|'5(G)| =
����� 5 (6)(2)6!

G6

����� =
�� 5 6(2)��
6!

��G6�� ≤ 4 · 1
6!

Example 15.2

Estimate cos(1) to within 1/1000 using a Taylor polynomial.
Take G0 = 0, on [−1, 1]. We need

|'=(G)| =
���� 5 =+1(2)(= + 1)!G

=+1
���� ≤ 1

1000
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If you find the Taylor polynomial of cosine to the 6th degree,

cos(0) ≈ 1 − G
2

2!
+ G

4

4!
− G

6

6!

∴

����−G66! ���� ≤ 1

1000
on [−1, 1]

Hence, this is a good enough approximation that estimates cos(G) on [−1, 1] within an error of 1/1000.

Note

You can estimate � with tan−1(1) because it equals �/4.

Theorem 15.1

4 is irrational.

Proof. We know that 4 < 3. Then, we have that

0 < 4 −
(
1 + 1 + 1

2!
+ 1

3!
+ . . . + 1

=!

)
<

3

(= + 1)! <
3

(= + 1)!
We can assume 4 = 0

1
where 1 ≠ 0 and 0, 1 ∈ ℤ. Then,

0 <
0

1
−

(
1 + 1 + 1

2!
+ 1

3!
+ . . . + 1

=!

)
<

3

(= + 1)!
Let " be the middle term. Then, take = > max{1, 3}. Finally, we have

0 < " < 0 − =!
(
1 + 1 + 1

2!
+ 1

3!
+ . . . + 1

=!

)
<

3

= + 1 <
3

4

This is a contradiction because there is no integer between 0 and 3
4 even though " is an integer. �

15.2 Riemann Integrability

Definition 15.2: Partition

Let [0, 1] be an interval in ℝ. A partition P of [0, 1] is a finite set of points {G0 , G1 , . . . , G=} such that
0 = G0 < G1 < G2 < · · · < G= = 1.

Definition 15.3: Upper and lower sums

Let P = {G0 , G1 , . . . , G=} be a partition of [0, 1], and let

"8( 5 ) = sup { 5 (G) : [G8−1 , G8]}
<8( 5 ) = inf { 5 (G) : [G8−1 , G8]}

For example, 5 (G) = G + 3, G0 = 1 and G1 = 2. Hence,

"1( 5 ) = 5

<1( 5 ) = 4

Let ΔG8 = G8 − G8−1. We then define *( 5 , ?) = ∑=
8=1 "8ΔG8 (the upper sum of 5 with respect to P) and

!( 5 , ?) = ∑=
8=1 <8ΔG8 (the lower sum of 5 with respect to P). Now, define

*( 5 ) = inf{*( 5 ,P) : P is a partition of [0, 1]}
!( 5 ) = sup{!( 5 ,P) : P is a partition of [0, 1]}
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Definition 15.4: Riemann integrable

We say that 5 is Riemann integrable if and only if *( 5 ) = !( 5 ). In this case, we write∫ 1

0

5 (G)3G = *( 5 ) = !( 5 )

To show a function 5 is Riemann integrable on [0, 1) given � > 0, we only need to find one partition such that

*( 5 ,P) − !( 5 ,P) < �
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Chapter 16

November 3

16.1 Partitions

Theorem 16.1

Let 5 be bounded on [0, 1] if P and Q are partitions of [0, 1] such that Q is a refinement of P. Then,

!( 5 ,P) ≤ !( 5 ,Q) ≤ *( 5 ,Q) ≤ *( 5 ,P)

Proof. We know that Q will contain more points than P. P is described by <: · (G: − G:−1) while Q is described by
<G · (G★ − G:−1) + <G · (G: − G★). �

Theorem 16.2

Let P and Q be partitions of [0, 1]. Then

!( 5 ,P) ≤ *( 5 ,Q)

Proof. Let P and Q be partitions of 5 . Then P ∪ Q is a refinement of P and Q. Thus,

!( 5 ,P) ≤ ( 5 ,P ∪ Q) ≤ *( 5 ,P ∪ Q) ≤ *( 5 ,Q)

�

Theorem 16.3

Let 5 be bounded on [0, 1]. Then, !( 5 ) ≤ *( 5 ).

Proof. Let P and Q be partitions of [0, 1]. Then by the previous theorem, *( 5 ,Q) is an upper bound for

( = {!( 5 ,P) : P is a partition of [0, 1]}

So, *( 5 ,Q) is at least as large as sup ( = !( 5 ). That is, !( 5 ) ≤ *( 5 ,Q) for each partition Q. Then,

!( 5 ) ≤ inf{*( 5 ,Q) : Q is a partition of [0, 1]} = *( 5 )

Therefore, !( 5 ) ≤ *( 5 ). �

Example 16.1

5 (G) = G2 on [0, 1] with partition P= = {0, 1= , 2= , . . . , =−1= , 1}.
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"8 = sup

{
5 (G) : G ∈

[
8 − 1
=

,
8

=

]}
=

(
82

=2

)
"8 = inf

{
5 (G) : G ∈

[
8 − 1
=

,
8

=

]}
=

(
8 − 1
=

)2
*( 5 ,P=) =

=∑
8=1

"8 · ΔG8 =
=∑
8=1

(
8

=

)2
· 1
=
=

1

=3

=∑
8=1

82 =

[
1

=3
· =(= + 1)(2= + 1)

6

]
!( 5 ,P=) =

=∑
8=1

<8 · ΔG8 =
=∑
8=1

(
8 − 1
=

)2
· 1
=
=

1

=3

=∑
8=1

(8 − 1)2 =
[
1

=3
· =(= − 1)(2= − 1)

6

]
Then, lim=→∞*( 5 ,P=) = 1

3 and lim=→∞ !( 5 ,P=) = 1
3 . Thus, *( 5 ) ≤ 1

3 and !( 5 ) ≥ 1
3 . Because !( 5 ) ≤ *( 5 ),

we have that !( 5 ) = *( 5 ) = 1
3 .

Since !( 5 ) = *( 5 ), this function is Riemann integrable. Therefore,∫ 1

0

G2 =

∫ 1

0

G23G =
1

3

Theorem 16.4

Let 5 be a bounded function on [0, 1]. Then, 5 is Riemann integrable if and only if given an � > 0, ∃ a partition
of [0, 1] such that

*( 5 ,P) − !( 5 ,P) < �

Proof. If 5 is Riemann integrable, since � > 0, ∃ a partition P1 such that

!( 5 ,P1) > !( 5 ) − �
2

Similarly, ∃P2 such that

*( 5 ,P2) < *( 5 ) +
�
2

Let P = P1 ∪ P2. Then,

*( 5 ,P) − !( 5 ,P) ≤ *( 5 ,P2) − !( 5 ,P1)

<
(
*( 5 ) + �

2

)
−

(
(!( 5 ) − �

2
)
)

= *( 5 ) − !( 5 ) + �
= �

Therefore, 5 is Riemann integrable.
Conversely, given � > 0, suppose ∃P such that *( 5 ,P) < !( 5 ,P) + �. Then,

*( 5 ,P) ≤ *( 5 ,P) < !( 5 ,P) + � ≤ !( 5 ) + �

Therefore, *( 5 ) ≤ !( 5 ). But then !( 5 ) = *( 5 ), so 5 is Riemann integrable. �

Note

Generally, we just need to find some partition P such that *( 5 ,P) and !( 5 ,P) are within � of each other.

Theorem 16.5

Show that 5 (G) = G is Riemann integrable on [0, 1].
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Proof. We need to find a partition P such that for every � > 0,

*( 5 ,P) − !( 5 ,P) < �

Define P= = {0, 1= , 2= , . . . , =−1= , 1}. Then,

*( 5 ,P=) − !( 5 ,P=) =
=∑
8=1

"8ΔG8 −
=∑
8=1

<8ΔG8

=

=∑
8=1

(
8

=

)
· 1
=
−

=∑
8=1

(
8 − 1
=

)
· 1
=

=
1

=2

(
=∑
8=1

8 −
=∑
8=1

(8 − 1)
)

=
1

=2

(
=(= + 1)

2
− =(= − 1)

2

)
=

1

=2
· =

=
1

=
< � =⇒ = >

1

�

Thus, we should choose some = > 1
� so P = P= . Therefore, 5 is Riemann integrable. �
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Chapter 17

November 8

17.1 Tagged Partitions

Definition 17.1: Tagged partition

¤P is a tagged partition of the form {([G8−1 , G8], C8)}=8=1 where C8 ∈ [G8−1 , G8]. Let ¤P be a tagged partition of

[0, 1]. Then, define the Riemann sum of 5 with respect to ¤P on [0, 1] as

(( 5 , ¤P) =
=∑
8=1

5 (C8) · (G8 − G8−1)

Note

| | ¤P|| = | |P|| = max{G1 − G0 , G2 − G1 , . . . , G= − G=−1}

Definition 17.2: Riemann integrable

A function 5 : [0, 1] → ' is said to be Riemann integrable on [0, 1] if ∃ a number ! such that ∀� > 0, ∃� > 0

such that if ¤P is any partition with | | ¤P|| < �, then���(( 5 , ¤P) − !��� < �

In this case we say that
∫ 1

0
5 =

∫ 1

0
5 (G)3G = !.

Theorem 17.1

Every constant function is Riemann integrable on [0, 1].

Proof. Given � > 0, we need to find � such that | | ¤P|| < � =⇒ |(( 5 , ¤P − :(1 − 0)| < C. We have that

(( 5 , ¤P) = 5 (C1) · ΔG1
= :(1 − 0)

|(( 5 , ¤P) − :(1 − 0)| = |:(1 − 0) − :(1 − 0)| = 0 < �

So, we can choose some � to satisfy this condition. Thus, every constant function is Riemann integrable. �

Lemma 17.1

Let : ∈ ' and ¤P be a tagged partition, then

((: 5 , ¤P) = :(( 5 , ¤P)
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Theorem 17.2

Let : ∈ ' and 5 ∈ ℛ[0, 1], then ∫ 1

0

: 5 = :

∫ 1

0

5

Proof. Given � < 0, we need to find � such that | | ¤P|| < � =⇒ |((: 5 , ¤P) − :
∫ 1

0
5 | < �. Since 5 ∈ ℛ[0, 1], ∃� such

that | | ¤P|| < � =⇒ |(( 5 , ¤P) −
∫ 1

0
5 | < �

|: | . Then, ∀ ¤P such that | | ¤P|| < �, we have that�����((: 5 , ¤P) − : ∫ 1

0

5

����� =
�����:(( 5 , ¤P) − : ∫ 1

0

5

�����
=

�����:(( 5 , ¤P) − ∫ 1

0

: 5

�����
<

�

|: | · |: | = �

�

Note

Note that ℛ[0, 1] is the set of all Riemann integrable functions on [0, 1].

Theorem 17.3

(On exam 2) If 5 , 6 ∈ ℛ[0, 1], then
5 + 6 ∈ ℛ[0, 1]

Proof. We can either find ? such that *( 5 + 6,P) − !( 5 + 6,P) < � to show that �
2 + �

2 < � OR we can find

|(( 5 + 6, ¤P) −
∫ 1

0
5 +

∫ 1

0
6 | < � to show that �

2 + �
2 < �. �

Theorem 17.4

(On exam 2) �����(( 5 + 6, ¤P) − (∫ 1

0

5 +
∫ 1

0

6

)����� < �
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Chapter 18

November 10

18.1 Riemann Integrability and Continuity

Definition 18.1: Fundamental theorem of calculus

5 (G) : � → ℝ is uniformly continuous if and only if given � > 0, ∃� such that |G−H | < � =⇒ | 5 (G)− 5 (H)| < �.

Note

We are closer to proving this!

Theorem 18.1

A continuous function on a closed interval [0, 1] is uniformly continuous.

Note

To be proved.

Theorem 18.2

Let 5 be continuous on [0, 1]. Then, 5 is Riemann integrable on [0, 1].

Proof. Since 5 is continuous on [0, 1], ∃� > 0 such that when |G − H | < �, | 5 (G) − 5 (H) < �
1−0∀� > 0. Let P be a

partition of [0, 1] such that ΔG8 < �∀8. On each subinterval [G8 , G8+1], 5 will obtain a maximum and minimum value
at B8 and C8 respectively. Furthermore, |B8 − C8 | < �, so

0 ≤ "8 − <8 = 5 (C8) − 5 (B8) <
�

1 − 0∀8

Then,

*( 5 ,P) − !( 5 ,P) =
=∑
8=1

("8 − <8)ΔG8 <
=∑
8=1

�
1 − 0ΔG8 =

�
1 − 0 (1 − 0) = �

�

Theorem 18.3

If 5 ∈ '[0, 2] and 5 ∈ '[2, 1], then 5 ∈ '[0, 1] and∫ 1

0

5 =

∫ 2

0

5 +
∫ 1

2

5
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Proof. Given � > 0, ∃ a partition P1 of [0, 2] and P2 of [2, 1] such that *( 5 ,P1) − !( 5 ,P1) < �
2 and *( 5 ,P2) −

!( 5 ,P2) < �
2 . Then, define P = P1 ∪ P2. Then, P is a partition of [0, 1] and

*( 5 ,P) − !( 5 ,P) = *( 5 ,P1) +*( 5 ,P2) − !( 5 ,P1) − !( 5 ,P2)
= *( 5 ,P1) − !( 5 ,P1) +*( 5 ,P2) − !( 5 ,P2)

<
�
2
+ �

2
= �

So, 5 ∈ '[0, 1]. Furthermore, ∫ 1

0

5 ≤ *( 5 ,P) = *( 5 ,P1) +*( 5 ,P2)

< !( 5 ,P1) + !( 5 ,P2) + �

≤
∫ 2

0

5 +
∫ 1

2

5 + �

Similarly, ∫ 1

0

5 ≥ !( 5 ,P) = !( 5 ,P1) + !( 5 ,P2)

> *( 5 ,P1) +*( 5 ,P2) − �

≥
∫ 2

0

5 +
∫ 1

2

5 − �

Therefore,
∫ 1

0
5 =

∫ 2

0
5 +

∫ 1

2
5 . �

Theorem 18.4

If 5 is Riemann integrable on [0, 1] and 6 is continuous on [2, 3] when 5 ([0, 1]) ⊆ [2, 3], then 6 ◦ 5 is Riemann
integrable on [0, 1].

Note

To be proved.

Theorem 18.5

Let 5 be Riemann integrable on a closed interval [0, 1]. Then, | 5 | is Riemann integrable on [0, 1] and�����∫ 1

0

5

����� ≤ ∫ 1

0

| 5 |

Proof. |G | is continuous so we can apply the previous theorem. Then,

−| 5 (G)| ≤ 5 (G) ≤ | 5 (G)|

−
∫ 1

0

| 5 | ≤
∫ 1

0

5 ≤
∫ 1

0

| 5 | because
"8

<8

Thus,
���∫ 1

0
5
��� ≤ ∫ 1

0
| 5 |. �
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Chapter 19

November 29

19.1 Uniform Continuity

Definition 19.1: Uniform continuity

Let � ∈ ℝ and 5 : �→ ℝ. 5 is uniformly continuous on � if ∀� > 0, ∃� > 0 such that ∀G, H ∈ �, |G − H | <
� =⇒ | 5 (G) − 5 (H)| < �.

Then, the following are equivalent:

• 5 is not uniformly continuous on �.

• ∃� > 0 such that ∃� > 0 and ∃G, H ∈ � such that |G − H | < � and | 5 (G) − 5 (H)| ≥ �.

• ∃� > 0 and sequences (G=), (H=) such that lim(G=) − (H=) = 0 and | 5 (G=) − 5 (H=)| ≥ �.

Example 19.1

5 (G) = 1
G , (G=) = 1

= , (H=) = 1
=+1 . Then, lim(G=) − (H=) = 1

= − 1
=+1 =

1
=(=+1) → 0. However, | 5 (G=) − 5 (H=)| =

|= − (= + 1)| = | − 1| = 1. So, 5 is not uniformly continuous.

Theorem 19.1 Uniform continuity theorem

Let � be a closed bounded interval and let 5 : � → ℝ be a continuous function. Then, 5 is uniformly continuous
on �.

Proof. Suppose 5 is not uniformly continuous on �. ∃� > 0 and two sequences (G=), (H=) such that |(G=) − (H=)| < 1
=

and | 5 (G=) − 5 (H=)| ≥ �. Since � is bounded, (G=) is bounded.
Then, by the Bolzano-Weierstrass theorem, there exists a subsequence (G= :) that converges to some element

say I. Since � is closed, I ∈ �.
Furthermore, (H= :) converges to I since |(H= :)− I | ≤ |(H= :)− (G= :)| + |(G= :)− I |. Since 5 is continuous, 5 (G= :)

and 5 (H= :) converge to 5 (I). But, this is impossible since | 5 (G= :) − 5 (H= :)| ≥ �. This is a contradiction. Thus, 5 is
uniformly continuous on �. �
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Chapter 20

December 1

20.1 Fundamental Theorem of Calculus

Theorem 20.1 Fundamental theorem of calculus

Let 5 be a bounded Riemann integrable function on [0, 1]. For each G ∈ [0, 1], let

�(G) =
∫ G

0

5 (C) 3C

Then, �(G) is uniformly continuous on [0, 1]. Furthermore, if 5 is continuous and 2 8=[0, 1], � is differentiable
and

�′(2) = 5 (2)

Proof. Since 5 is bounded, ∃� ∈ ℝ such that | 5 | ≤ �∀G ∈ [0, 1]. Let � > 0¡ then if G, H ∈ [0, 1] and |H − G | < �
� , we

have that

|�(H) − �(G)| =
����∫ H

0

5 −
∫ G

0

5

���� = ����∫ H

G

5

���� ≤ ∫ H

G

| 5 | ≤
∫ H

G

� = �(H − G) < �
�
�
< �

Thus, � is uniformly continuous on [0, 1].
Now suppose 5 is continuous on [0, 1]. Given � > 0∃� > 0 such that | 5 (C) − 5 (2)| < � whenever |C − 2 | < �.

Note 5 (2) is a constant so we may write

5 (2) = 1

G − 2

∫ G

2

5 (2) 3C where G ≠ 2

Thus, ∀G ∈ [0, 1] with 0 < |G − 2 | < �, we have���� 5 (G) − 5 (2)G − 2 − 5 (2)
���� = ���� 1

G − 2

[∫ G

0

5 −
∫ 2

0

5

]
− 5 (2)

����
=

���� 1

G − 2

∫ G

2

5 − 1

G − 2

∫ G

2

5 (2) 3C
����

=

���� 1

G − 2

∫ G

2

5 (C) − 5 (2) 3C
����

=
1

G − 2

����∫ G

2

5 (C) − 5 (2) 3C
����

≤ 1

G − 2

∫ G

2

| 5 (C) − 5 (2)| 3C

<
1

G − 2 �|G − 2 | = �
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Thus,

�′(2) = lim
G→2

�(G) − �(2)
G − 2 = lim

G→2

5 (G) − 5 (2)
G − 2 = 5 (2)

�

Theorem 20.2

If 5 is differentiable on a closed interval [0, 1] and 5 ′ is Riemann integrable, then∫ 1

0

5 ′ 3G = 5 (1) − 5 (0)

Proof. Let P = {G0 , . . . , G=} be a partition of [0, 1] by applying the Mean Value Theorem to each subinterval [G8−1 , G8].
We obtain points C8 ∈ [G8−1 , G8] such that

5 (G8) − 5 (G8−1) = 5 ′(C8)(G8 − G8−1)

Then, we have

5 (1) − 5 (0) =
=∑
8=1

5 (G8) − 5 (G8−1) =
=∑
8=1

5 ′(C8)(G8 − G8−1)

Since <8( 5 ′) ≤ 5 ′(C8) ≤ "8( 5 ′) we have that !( 5 ′, ?) ≤ 5 (1) − 5 (0) ≤ *( 5 ′, ?). Then, !( 5 ′) ≤ 5 (1) − 5 (0) ≤
*( 5 ′). Since 5 ′ is Riemann integrable,

!( 5 ′) = *( 5 ′) = 5 (1) − 5 (0) =
∫ 1

0

5 ′ 3G

�
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